Cerebro

En biología, el cerebro, dentro de lo que es la anatomía de los animales vertebrados como parte del encéfalo, es el centro supervisor del sistema nervioso (aunque también suele usarse el mismo término para referirse al tumor de los invertebrados). En muchos animales, el cerebro se localiza en la cabeza.
El cerebro humano pesa aproximadamente 1300-1500 gramos; su corteza cerebral extendida cubriría una superficie de 1800-2300 centímetros cuadrados. Se estima que en su interior hay unos 22000 millones de neuronas, aunque hay estudios que llegan a reducir esa cifra a los 10000 millones y otros a ampliarla hasta los 100000 millones.
El cerebro es el único órgano completamente protegido por una bóveda ósea y alojado en la cavidad craneal.
cerebro.jpg

Funcionamiento general

El cerebro usa la energía bioquímica procedente del metabolismo celular como desencadenante de las reacciones neuronales. Los 'paquetes' de energía se reciben por las dendritas y se emiten por los axones en forma de neurotransmisores.

Regiones metabólicas

Cada neurona pertenece a una región metabólica encargada de compensar la deficiencia o exceso de cargas en otras neuronas. Se puede decir que el proceso se ha completado cuando la región afectada deja de ser activa. Cuando la activación de una región tiene como consecuencia la activación de otra diferente, se puede decir que entre ambas regiones ha habido un intercambio biomolecular. Todos los resultados y reacciones desencadenantes son transmitidos por neurotransmisores, y el alcance de dicha reacción puede ser inmediata (afecta directamente a otras neuronas pertenecientes a la misma región de proceso), local (afecta a otra región de proceso ajena a la inicial) y/o global (afecta a todo el sistema nervioso).

Interacción neurotransmisora

Un neurotransmisor es una molécula en estado de transición, con déficit o superavit de cargas. Este estado de transición le da un tiempo máximo de estabilidad de unas cuantas vibraciones moleculares. El medio por el cual se transmite es la mielina, responsable de la sinapsis neuronal, que conecta con el grupo de receptores dendríticos, descargando en la dendríta específica que admite el neurotransmisor portador de la carga.
El paso del neurotransmisor por los axones estimula la creación de mielina, por lo que a mayor cantidad de mielina menor resistencia a la transmisión y menor uso de recursos.

Esquema de funcionamiento

El esquema de funcionamiento sería el siguiente: Neurona A demanda paquete de energía, neurona B recibe el estímulo. Neurona B procesa paquete de energía, neurona B emite paquete de energía con carga eléctrica. El paquete es transmitido por el cuerpo del axón gracias al recubrimiento lipídico, y es llevado hasta la dendrita de la neurona A que tiene por costumbre recibir ese tipo de paquetes. El tryaxón de la Neurona B libera el paquete y la neurona A lo descompone.

Transmisión eléctrica y Neurotransmisión

Entendido esto (en rasgos muy generales), se establece que, tanto un sistema de transmisión de cobre tiene resistencia al paso de las cargas eléctricas, de forma equivalente, el sistema nervioso tiene una resistencia al paso de las cargas bioeléctricas, establecido (principalmente) por la cantidad de mielina en los axones. Otros aspectos a tener en cuenta en dicha 'resistencia', serían los siguientes:
  • Metabolismo
  • Tipo de molécula que porta la carga.
  • Tiempo en el que esa molécula conserva sus propiedades.
  • Variación de la entalpía.
  • Otros factores.
No todas las neuronas son productoras de mielina, por lo que no toda neurotransmisión tiene el mismo patrón específico, pero sí general.

Tareas cerebrales

El cerebro procesa la información sensorial , controla y coordina el movimiento, el comportamiento y puede llegar a dar prioridad a las funciones corporales homeostáticas, como los latidos del corazón, la presión sanguínea, el balance de fluidos y la temperatura corporal; si bien, el encargado de llevar el proceso automático es el bulbo raquídeo. El cerebro es responsable de la cognición, las emociones, la memoria y el aprendizaje.
La capacidad de procesamiento y almacenamiento de un cerebro humano estándar supera aun a las mejores computadores hoy en día. Algunos científicos tienen la creencia que un cerebro que realice una mayor cantidad de sinapsis puede desarrollar mayor inteligencia que uno con menor desarrollo neuronal.
Hasta no hace muchos años, se pensaba que el cerebro tenía zonas exclusivas de funcionamiento hasta que por medio de imagenología se pudo determinar que cuando se realiza una función, el cerebro actúa de manera semejante a una orquesta sinfónica interactuando varias áreas entre sí. Además se pudo establecer que cuando un área cerebral no especializada, es dañada, otra área puede realizar un reemplazo parcial de sus funciones.
cerebro9.jpg

Regeneración cerebral

El cerebro humano adulto, en condiciones normales, puede generar nuevas neuronas. Estas nuevas células se producen en el hipocampo, región relacionada con la memoria y el aprendizaje. Las células madre, origen de esas neuronas, pueden constituir así una reserva potencial para la regeneración neuronal de un sistema nervioso dañado.
No obstante, la capacidad regenerativa del cerebro es escasa, en comparación con otros tejidos del organismo. Esto se debe a la escasez de esas células madre en el conjunto del sistema nervioso central y a la inhibición de la diferenciación neuronal por factores microambientales.

El cerebro en medicina

El cerebro, junto con el corazón, es uno de los dos órganos más importantes del cuerpo humano. Una pérdida de funcionalidad de este órgano lleva a la muerte. Por otro lado, los daños en el cerebro causan pérdidas de inteligencia, memoria y control del cuerpo. En la mayor parte de los casos, estos daños suelen deberse a inflamaciones, edemas, o impactos en la cabeza. Los accidentes cerebrovasculares producidos por el bloqueo de vasos sanguíneos del cerebro son también una causa importante de muerte y daño cerebral.
Otros problemas cerebrales se pueden clasificar mejor como enfermedades que como daños. Las enfermedades neurodegenerativas como la enfermedad de Alzheimer, la enfermedad de Parkinson, la esclerosis lateral amiotrófica y la enfermedad de Huntington están causadas por la muerte gradual de neuronas individuales y actualmente sólo se pueden tratar sus síntomas. Las enfermedades mentales como la depresión clínica, la esquizofrenia, el desorden bipolar y el trastorno de estrés postraumático tienen una base biológica teórica en el cerebro y suelen tratarse con terapia psiquiátrica, drogas o una combinación de ambas.
Algunas enfermedades infecciosas que afectan al cerebro vienen causadas por virus o bacterias. La infección de las meninges puede llevar a una meningitis. La encefalopatía espongiforme bovina, también conocida como el mal de las vacas locas, es una enfermedad mortal entre el ganado y se asocia a priones. Asimismo, se ha verificado que la esclerosis múltiple, la enfermedad de Parkinson y la enfermedad de Lyme, así como la encefalopatía y la encefalomielitis, tienen causas virales o bacterianas.
Algunos desórdenes del cerebro son congénitos. La enfermedad de Tay-Sachs, el síndrome X frágil, el síndrome deleción 22q13, el síndrome de Down y el síndrome de Tourette están asociados a errores genéticos o cromosómicos.

Capacidad del cerebro humano

Existe la tendencia a comparar al cerebro con los constructos electrónicos del hombre. No se debe hacer, pues se suele caer en demagogia y alguna que otra falacia argumental. No existe base científica que logre demostrar sin margen de error que los datos de las comparaciones sean fiables al 100%, por lo que esos estudios son estimaciones por comparación entre conceptos equivalentes. Si bien las equivalencias pueden llegar a satisfacer los requerimientos de ciertos científicos, ellos mismos reconocen sus límites a la hora de entender el funcionamiento exacto del cerebro.
En un pasado, la euforia de los ingenieros por los logros tecnológicos, les llevaron a comparar los procesos cerebrales con los electrónicos, estableciendo equivalencias. No obstante, los intereses económicos de empresas se valen de esos estudios para sus fines comerciales. Así, estos estudios siempre salen de la mano de algún ente privado, sin una concordancia con alguna universidad de prestigio que avale esos resultados. Tenemos el caso de la típica comparación que existe entre las memorias de ordenadores, así como de otros métodos de retener información, y la capacidad rememorativa del cerebro humano. La compañía Laboratorios de Tecnología Avanzada de la Corporación RCA ofrece estas comparaciones, según se publicaron en la revista “Business Week”: Por eso, con toda la tecnología humana existente, el cerebro humano todavía tiene una capacidad 10 veces mayor que lo que está almacenado en los Archivos Nacionales de Estados Unidos, 500 veces mayor que un sistema de memoria de un ordenador avanzado y 10.000 veces mayor que lo que está registrado en la “Encyclopedia Britannica”
A diferencia de los ordenadores (lo que está en blanco permanece en blanco) el cerebro no pierde el tiempo ni desaprovecha las supuestas regiones 'no usadas'. Dada su gran capacidad de optimizar la energía, las neuronas siempre interactúan para evitar un costo mayor, por lo que las regiones 'no usadas' pasan a convertirse en regiones poco optimizadas. Una neurona sin usar es más costosa de mantener que cuando esta se conecta a un entramado sináptico. Por ello, cuando una neurona queda aislada del resto, su tendencia es a morir, y no a quedar en blanco.
De esto se desprende los comportamientos curiosos de las personas cuando han de incorporar nuevos enlaces a sus esquemas sinápticos. Por ejemplo, tratar de hacer entender a una abuelita el funcionamiento de un cajero automático puede ser desesperante, sus facultades mentales están acostumbradas a tratar con personas, su optimización sináptica está adaptada a personas, no con máquinas; cambiar toda la inercia cerebral de un anciano que ha basado su experiencia bancaria en base a la comunicación humana, es muy costoso, la tendencia siempre será a ir a lo conocido. Ahora pongamos a un niño de 5 años frente a una máquina, suponiendo que en su corta vida solo haya jugado con juguetes tradicionales, el niño pronto aprenderá a entenderse con el constructo electrónico.
En el funcionamiento de un ordenador no se permite la modificación de los entramados electrónicos, por ser Hardware. La gran ventaja del cerebro frente a un ordenador, no es la capacidad de almacenamiento ni de proceso de información, sino la de adaptación y constante búsqueda de la optimización de la energía por la modificación de su propio 'Hardware'.
Las ingenierías humanas no tardarán en llegar a fabricar aparatos que superen con creces los recursos de velocidad y almacenamiento cerebral, pero lo que aun queda lejos es dotar a lo construido de la facultad de adaptarse al medio usando recursos naturales por su elección y autonomía, manteniendo al mismo tiempo los recursos de velocidad y almacenamiento. Lo verdaderamente interesante será saber el costo energético que se necesitará para sostener dicha técnica.

Plasticidad del cerebro humano

A la fecha, los estudios indican un alto grado de adaptabilidad y versatilidad funcional de distintas áreas del cerebro. Constantemente el cerebro va generando nuevas redes sinápticas sobre las ya existentes para ir adaptándose a las necesidades cognitivas, emocionales y sociales de un individuo. Se ha corroborado que los avances tecnológicos van modificando la forma en que funciona el cerebro. Sin embargo, existen claras limitaciones químicas, fisiológicas, y ambientales (incluso culturales en algunas sociedades). Incluso se ha comprobado que la meditación permite mejorar la inteligencia innata que el cerebro comprende.

El interior del cerebro

A pesar del gran número de especies animales en los que se puede encontrar cerebro, hay un gran número de características comunes en su configuración celular, estructural y funcional. A nivel celular, el cerebro se compone de dos clases de células: las neuronas y las neuroglías. Las neuronas se conectan entre sí para formar circuitos neuronales similares (pero no idénticos) a los circuitos eléctricos sintéticos. El cerebro se divide en secciones separadas espacialmente, composicionalmente y en muchos casos, funcionalmente. En los mamíferos, estas partes son el telencéfalo, el cerebelo y el tronco del encéfalo. Estas secciones se pueden dividir a su vez en hemisferios, lóbulos, córtex, áreas, etc.